

DOE: From Hunch to Crunch *A Tremco Case Study*

Richard Wiltse Tremco Inc. Master Black Belt

Sponsored by:

MBB Webcast Series Sponsor: MoreSteam.com

- Founded in 2000
- Trained 435,000+ Lean Six Sigma professionals
- Served over 2,000 corporate customers (including 50+% of the F500)
- First firm to offer the complete Black Belt curriculum online
- Courses reviewed and approved by ASQ and PMI
- Academic Partnerships with Ohio State University, Cal Poly and George Washington University

Today's Program

- Welcome
- Introduction of MBB Webcast Series
 - Ellen Milnes, MoreSteam.com
- Presentation:
 - Richard Wiltse, MoreSteam.com
- Open Discussion and Questions

Today's Presenter

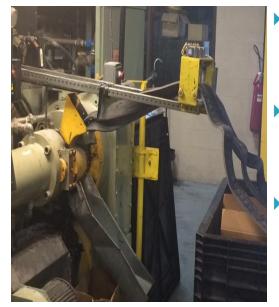
Richard Wiltse

Tremco Commercial Sealants & Waterproofing

- Divisional Black Belt developing Lean Six Sigma teams and continuous improvement culture across organization
- Founded the AME Lean Consortia Cleveland chapter
- B.S. Illinois State University, MBA Shenandoah University, Master Black Belt – Ohio State/MoreSteam.com

A Tremco Case Study: Silicone Viscosity

DOE: Effect of processing and time on silicone viscosity



Background information

- Silicone rubber is produced in small, 175 lb batches that cycle approximately every 15 – 20 minutes
- "Small adds" of various raw's are weighed and sent to a mixer for a 15 minute mix time
- The mixed material is then sent to a mill where it is milled for several minutes
- The milled material is sent to an extruder and extruded into strips, then placed in a tote for shipment
- Various Quality checks are performed on each batch, including viscosity

6

Tremco Case Study: DOE Silicone

Effect of processing and time on silicone viscosity: AGENDA

- Hunch and clues that a DOE may be needed
 - How to spot when a DOE may be the best approach
- What are we out to achieve?
 - Problem definition and supportive data, DMAIC
- Critical Success Factors (CSF's)
 - What can make or break your experiment! Culmination of experience
- Additional DOE Benefits
 - Getting the most from your experiment
- Analyze the Experiments!

Clues that a DOE may be needed

There exists a quality issue that comes and goes....

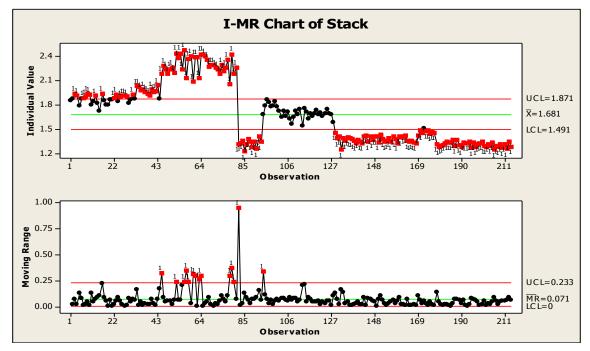
- Everyone has a reason why the issue occurs....yet the quality problem persists
- There exists little or no supporting data...only opinions and perceived observations
- No one including Engineers, Operators, and Front Line Personnel, can precisely define process specifications

Define: What are we out to achieve?

	Project Charter									
Project Name:	Silicone variance reduction	Process Metrics: Cpk values								
Project Sponsor:	Chris Kerr- primary Ken Recko - back-up	Capability Analysis	BL .50	Gc 1.3		B-I-C 2.0				
Project Originator:	Ryan Eichar	Start Date:				7/1/13				
Project Manager:	Richard Wiltse	Duration (in mo	nths)			6				
Project Level:	2.00	Strategic Imperativ	ve Aligned t	to:		LEAN				
	t: several years, Silicone 557 has been ributed to changes in viscosity levels				le, and	losing feed.				
Goal Statement:										
1) Determine the proper viscosity specifications, 2)Determine critical process variables 3) Try to achieve Ppk 1.33 4) Determine outcome on manufacturing										

CSF # 1: Agreed upon charter

- Reduces scope expansion
- Eliminates confusion over problem severity
- Properly directs Team forward

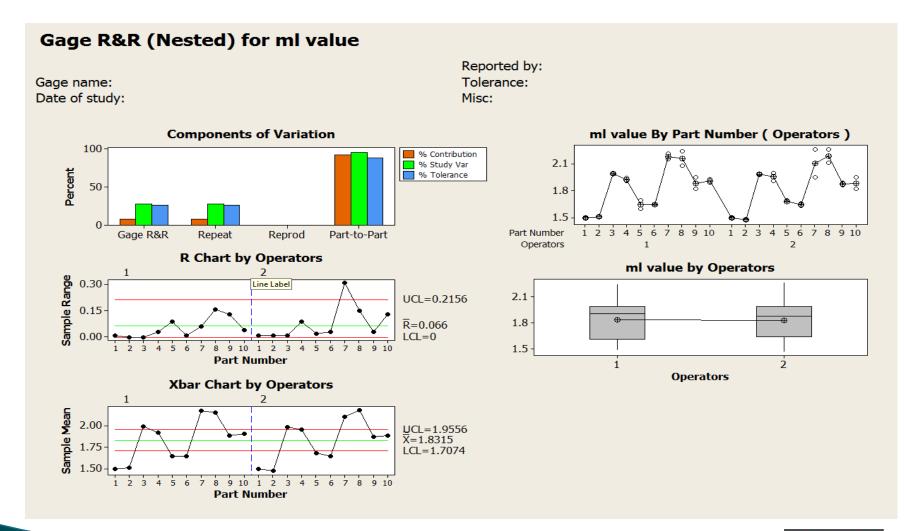


Measure - Historical baseline

MEASURE

Gathered data from Supplier Certs

Evidence of both trending and stratification


CSF#2: Do your homework on baseline data

Demonstrates a need

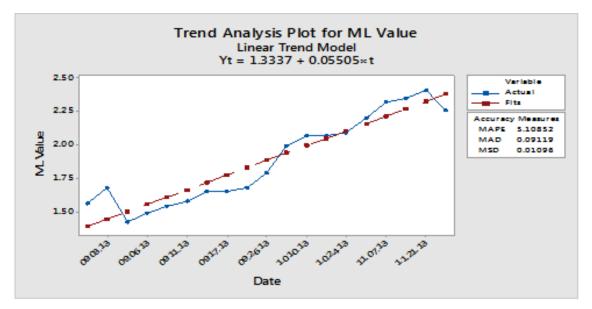
- Our data clearly shows excess variability that is detrimental to manufacturing
- Allows the ability to quantify an improvement
 - "If you don't know where you are, how will you get to where you are going?"

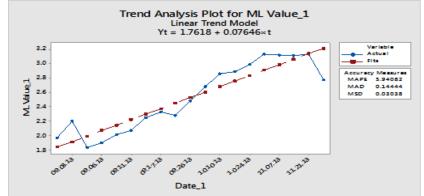
Measure - Gage R&R

CSF#3: Insist on Measurement Standard Work

- Document, document, document
 - Procedural drift
- Will take several trials to ensure complete understanding

- What is the true shelf life of Silicone Rubber?
- What viscosity levels should we trial at (in extrusion) in order to start specification development?
- What are potential processing factors (at our supplier) that influence viscosity?




Analyze: Time Series Trend Analysis, 10 weeks

Silicone changes in viscosity over time. How much depends on starting point. Regression coefficients:

ML	Coefficient
1.5	.055
2.0	.076
2.5	.164

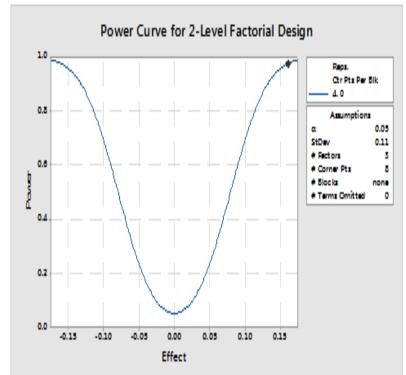
Extrusions ran well at the 2.0 + - .3 range

DOE benefit – specification analysis

- DOE's (Factorial or OFAT) provide samples that properly defines specifications
 - Data based specifications, as opposed to "Industry Standards"
 - Samples for both setting and confirming specs

Analyze: Factorial DOE - Brainstorming

**Please rank 1-5, with 5 having the most impact.												
	Wei	ght of	flnpu	ut to O	utput							
Possible Inputs for Variation:	Ken	Alan	Jim	Sara	Rick	Average Ranking	RANK	Notes from Dec meeting:	DOE factors:	L1	L2	
Raw Materials									Base Durometer	55 - 56	62 - 65	
 Durometer of Base 	4	5	3	5	5	4.40	2		Catalyst	-5%	5%	
Plasticity of Base	5	5	5	5	4	4.80	1	Co-variate - cannot change	Mixer Temperature	Co-variate	e - cannot	change
 Age of Base 	3	1	3	2	2	2.20			Mill Time	1 m in	4 m in	
 Age of Catalyst 	3	1	3	3	2	2.40						
Age of Other Ingredients	2	1	2	2	1	1.60						
Particle Size of Powders	1	1	2	1	3	1.60		Co-variate: Plasticity of Base				
Color Variability	1	1	1	1	3	1.40						
Storage Condition of Raw Materials	2	1	2	2	2	1.80						
Weigh-up of Raw Materials	5	2	5	5	5	4.40	2					
Operators												
Weigh-up Operator								Exclude - this is simulated by Weigh				
	5	2	5	5	4	4.20	4	up of raw materials				
Mixer Operator	4	2	4	4	3	3.40	9					
 Mill Operator 	3	1	3	3	4	2.80						
 Extruder Operator 	5	1	3	3	3	3.00						
 Lab Technician 	2	1	2	2	3	2.00						
Mixer												
Dispersion	5	1	4	4	5	3.80	5	Exclude and use Mixer Time as a				
Heat / Temperature	4	1	5	4	5	3.80	5					
• Time	4	3	4	4	3	3.60	7	Out - does not vary				
Mill												
 Temperature 	3	1		3	5	3.00						
• Time	4	2	3	3	5	3.40	9					
 Thickness 	3	2	2	2	3	2.40						
Number of Batches Mixed per Run	2	1	2	2	1	1.60						
Time Between Mixing and Extruding	2	1	3	4	4	2.80						


CSF#4: Facilitated Brainstorming

- Use a skilled facilitator that is neutral..i.e...no bias
- Involve the right people
- Use "Round Robin" to ensure everyone has an equal chance of contributing
- Multi vote potential factors

High
63 5 0.05 4

Covariate: Temp of material Response: ML viscosity Replicates: 4

CSF#6: Factor Level Settings

- Study what the historical factors ran at review set up sheets
 - Many Operators have their own set up sheets
- For initial screening experiments like this, Level 1 and Level 2 should be set at the extremes of normal processing parameter values
 - Associates unfamiliar with DOE will tend to over inflate parameter values

CSF#7: Strive for adequate power through additional replicates

- Associates unfamiliar with DOE often do not see the need for replicates and randomization
 - Power: "the likelihood you will find a significant effect when one truly exists"
 - "You get what you pay for"
 - Committing resources, time, and material ... jump in with both feet

Monitoring the DOE

- Recommend to have at least two people monitoring the experiment
 - Are factor levels correct?
 - Has the process levelled out since the last change?
 - Are we randomized?
 - Are measurements of the Quality Characteristic being performed correctly?
- Check and double check each other

CSF #7: Have a Plan for Monitoring

- There are a million ways your DOE can go wrong....
 - False signals
- There is only one way for the DOE to go right

Have a Plan !!!!!

- Review randomization and overall design
- Who will be monitors
- Sample identification
- Sample placement and measurement

Review

DOE Critical Success Factors:

- CSF #1 Proper charter
- CSF #2: Good historical baseline
- CSF #3: Adequate Gage R&R w/ Std Work
- CSF #4: Facilitated Brainstorming
- CSF #5: Correct Factor Levels
- CSF #6: Adequate Power
- CSF #7: Proper monitoring
- DOE Additional benefit(s)
 - Sample based specifications

ANOVA

Factorial Regression: Results versus Temp of mate, base duromet, Catalyst, ...

Analysis of Variance

•	Source	DF	Adj SS	Adj MS	F-Value	P-Value
•	Model	8	0.587247	0.073406	10.43	0.000
•	Covariates	1	0.006659	0.006659	0.95	0.341
•	Temp of material	1	0.006659	0.006659	0.95	0.341
•	Linear	3	0.324007	0.108002	15.35	0.000
•	base durometer	1	0.319617	0.319617	45.42	0.000
•	Catalyst	1	0.002421	0.002421	0.34	0.563
•	mill time	1	0.004114	0.004114	0.58	0.452
•	2-Way Interactions	3	0.010969	0.003656	0.52	0.673
•	base durometer*Catalyst	1	0.009194	0.009194	1.31	0.265
•	base durometer*mill time	1	0.001265	0.001265	0.18	0.676
•	Catalyst*mill time	1	0.000822	0.000822	0.12	0.736
•	3-Way Interactions	1	0.001418	0.001418	0.20	0.658
•	base durometer*Catalyst*mill time	1	0.001418	0.001418	0.20	0.658
•	Error	23	0.161841	0.007037		
•	Lack-of-Fit	21	0.139741	0.006654	0.60	0.786
•	Pure Error	2	0.022100	0.011050		
•	Total	31	0.749088			

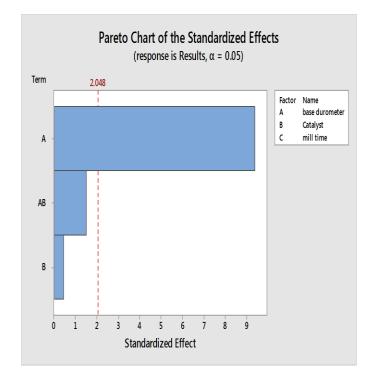
ANOVA – Reduced Model

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	3	0.572212	0.190737	30.19	0.000
Linear	2	0.557762	0.278881	44.15	0.000
base durometer	1	0.556512	0.556512	88.10	0.000
Catalyst	1	0.001250	0.001250	0.20	0.660
2-Way Interactions	1	0.014450	0.014450	2.29	0.142
base durometer*Catalyst	1	0.014450	0.014450	2.29	0.142
Error	28	0.176875	0.006317		
Lack-of-Fit	4	0.008375	0.002094	0.30	0.876
Pure Error	24	0.168500	0.007021		
Total	31	0.749088			

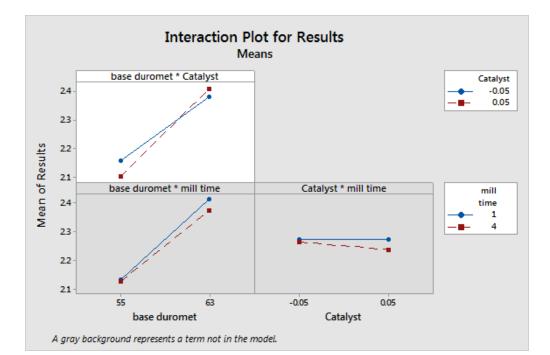
Model Summary

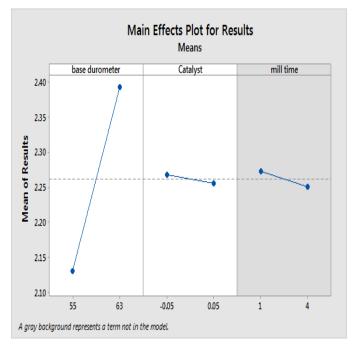
S	R-sq	R-sq(adj)	R-sq(pred)
0.0794793	76.39%	73.86%	69.16%


Analyze: DOE Results

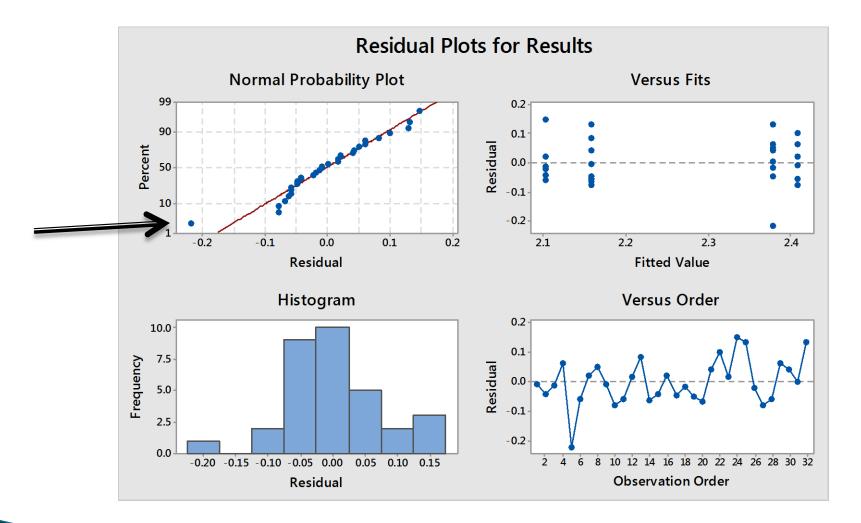
Factorial Regression: Results versus base durometer, Catalyst

Analysis of Variance


Source	DF	Adj SS	Adj MS	F-Value	P-Value
Model	3	0.572212	0.190737	30.19	0.000
Linear	2	0.557762	0.278881	44.15	0.000
base durometer	1	0.556512	0.556512	88.10	0.000
Catalyst	1	0.001250	0.001250	0.20	0.660
2-Way Interactions	1	0.014450	0.014450	2.29	0.142
base durometer*Catalyst	1	0.014450	0.014450	2.29	0.142
Error	28	0.176875	0.006317		
Lack-of-Fit	4	0.008375	0.002094	0.30	0.876
Pure Error	24	0.168500	0.007021		
Total	31	0.749088			


S	R-sq	R-sq(adj)	R-sq(pred)
0.0794793	76.39%	73.86%	69.16%

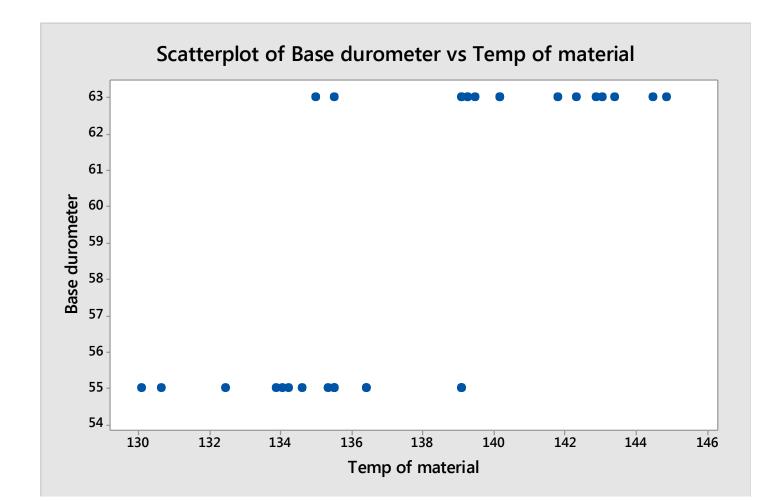
Interaction / Main Effect



CSF #7: Look at the Data.....

	Run	Center		base			Temp of	
StdOrder	Order	Pt	Blocks	durometer	Catalyst	mill time	material	Results
16	1	1	1	63	0.05	4	142.34	2.4
17	20	1	1	55	-0.05	1	134.24	2.09
18	4	1	1	63	-0.05	1	144.5	2.44
19	14	1	1	55	0.05	1	139.1	2.04
20	11	1	1	63	0.05	1	139.28	2.35
21	10	1	1	55	-0.05	4	134.6	2.08
22	19	1	1	63	-0.05	4	143.06	2.33
23	2	1	1	55	0.05	4	139.1	2.06
24	28	1	1	63	0.05	4	139.1	2.35
25	17	1	1	55	-0.05	1	136.4	2.11
26	5	1	1	63	-0.05	1	143.42	2.16
27	24	1	1	55	0.05	1	135.5	2.25
28	22	1	1	63	0.05	1	140.18	2.51
29	9	1	1	55	-0.05	4	139.1	2.15
30	31	1	1	63	-0.05	4	144.86	2.38
31	3	1	1	55	0.05	4	135.32	2.09
32	27	1	1	63	0.05	4	142.88	2.33

....And review the Residuals


Variance Inflation Factor: Are predictors correlated?

Model Summary

Term	VIF
Constant	
Temp of material	2.31
base durometer	2.18
Catalyst	1.03
mill time	1.00
base durometer*Catalyst	1.07
base durometer*mill time	1.01
Catalyst*mill time	1.02
<pre>base durometer*Catalyst*mill time</pre>	1.01

VIF

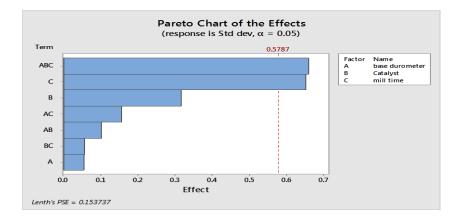
DOE: Analyze Variability

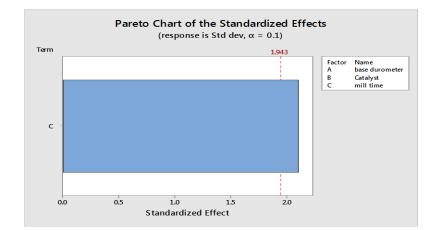
- Full factorial
- One replicate
- Used additional replicates as repeats

Base Durometer	Catalyst	mill time	R1	R2	R3	R4	Std dev	mean		
63	0.05	1	2.47	2.43	2.35	2.51	0.068313	2.44		
55	0.05	1	2.06	2.08	2.04	2.25	0.096393	2.1075		
55	0.05	4	2.12	2.12	2.06	2.09	0.028723	2.0975	L1	0.097629
63	-0.05	1	2.51	2.43	2.44	2.16	0.154164	2.385	L2	0.052821
55	-0.05	1	2.2	2.24	2.09	2.11	0.071647	2.16		
63	-0.05	4	2.42	2.36	2.33	2.38	0.037749	2.3725		
63	0.05	4	2.43	2.44	2.35	2.33	0.055603	2.3875		
55	-0.05	4	2.29	2.21	2.08	2.15	0.089209	2.1825		

Replicates as Repeats ???

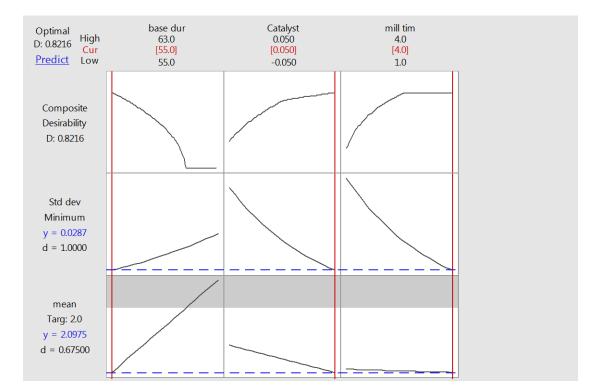
Replicates "look like" repeats


Very minimal set up


- Added / deleted Mill Time with a timer
- No tear down
- Raws were all added the same
- Mix was the same

Analyze: DOE Variability

- Mill time and the 3 way interaction appears to have influenced batch to batch variability
- Sparsity of Effects
- Mill time significant at .10 level

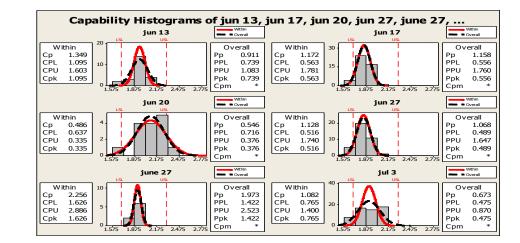


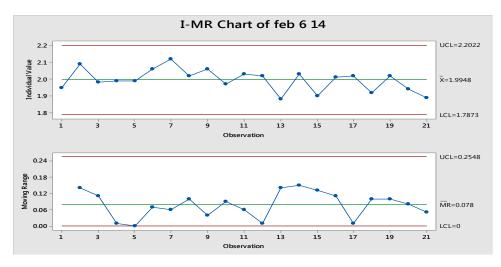
Improve: DOE optimal parameters

Optimal parameter settings occurred at:

Base Durometer 55 Catalyst .05 Mill Time 4 min

DOE samples were used to confirm specifications


Improve: Supplier Commitments


- Run to specification 2.0 +- .3
- Mix Base durometers to achieve target value of 2.0 ML
- Increase Mill time to reduce within lot variance (more analysis forthcoming)
- Investigate larger mixer batch sizes to reduce both within batch and batch to batch variation

Control: Supplier SPC

- Cpk and Ppk values for each lot of material
- SPC Individual Moving Range Charts

Lessons Learned

- Joint DOE efforts with Suppliers are achievable and can result in win-win
- Using replicates instead of repeats to analyze variability, along with only 4 readings, is risky and should only be used where minimal set ups are occurring. Confirm !!!

Questions

Richard Wiltse

Tremco Inc., MBB

File View Help

.

Attendees (1)

X Corena Bahr (Me)

- Attendee List (2 | Max 201)

NAMES - ALPHABETICALLY

8

Master Black Belt Program

- Offered in partnership with Fisher College of Business at The Ohio State University
- Employs a Blended Learning model with world-class instruction delivered in both the classroom and online
- Covers the MBB Body of Knowledge, topics ranging from advanced *DOE* to *Leading Change* to *Finance for MBBs*

Questions? Comments about today's program?

Richard Wiltse – Tremco Inc. <u>RWiltse@tremcoinc.com</u>

Ellen Milnes – MoreSteam.com emilnes@moresteam.com

Watch for info about our upcoming programs

Archived presentations and other materials: http://www.moresteam.com/presentations/

