MoreSteam.com

The Transactional Dilemma: Understanding Regression with Attribute Data

Smita Skrivanek

August 26, 2010

Copyright 2010 MoreSteam.com www.moresteam.com

Agenda

- Welcome
- Introduction of MBB Webcast Series
 - Larry Goldman, MoreSteam.com
- The Transactional Dilemma: Understanding Regression with Attribute Data
 - Smita Skrivanek, MoreSteam.com
- Open Discussion and Questions

MoreSteam.com – Company Background

- Founded 2000
- Over 250,000 Lean Six Sigma professionals trained
- Serving 45% of the Fortune 500
- First firm to offer the complete Black Belt curriculum online
- Courses reviewed and approved by ASQ
- Registered education provider of Project Management Institute (PMI)

Master Black Belt Program

- Offered in partnership with Fisher College of Business at The Ohio State University
- Employs a Blended Learning model with world-class instruction delivered in both the classroom and online
- Covers the MBB Body of Knowledge with topics ranging from advanced *DOE* to *Leading Change* to *Finance for MBBs*
- Go to <u>http://www.moresteam.com/master-black-belt.cfm</u> for more information about curriculum, prerequisites, and schedule

Today's Presenter

Smita Skrivanek

Principal Statistician, MoreSteam LLC

- Develops content, software functions, exam question banks and simulation games for MoreSteam's diverse client base
- EngineRoom® Product Manager
- Masters in Applied Statistics from The Ohio State University and a MS from Mumbai University, India

The 'Dilemma'

Examples of categorical responses:

Delinquent payments Return purchases Billing errors Brand preferences Delayed shipments

Customer satisfaction ratings

☆ It is unnecessary (and often inappropriate) to use continuous data methods on categorical responses. Logistic regression is a more intuitive and powerful method in such cases.

Objectives

- What is binary logistic regression (BLR)
- When is a logistic approach appropriate (and why)
- Probabilities, Odds and Odds Ratios
- Logistic model interpretation
- Methods used to estimate model coefficients, evaluate model fit and compare alternative models
- How to approach the teaching of logistic regression to students

The Regression Model

Ordinary Least Squares (OLS) Regression:

- infinity < E(Y|x) = α + βx < *infinity*

Logistic/Logit Regression:

OLS vs. BLR – the OLS Model

Copyright 2010 MoreSteam.com www.moresteam.com

OLS vs. BLR – Where We Go Wrong

OLS vs. BLR – Initial Comparison

Ordinary Least Squares (OLS)

- Independent data
- Errors are normal, with
- Constant variance (σ²)
- Y is linear in the predictors

Binary Logistic Regression (BLR)

- Independent data
- Errors are bernoulli, with
- Non-constant variance [p_i(1-p_i)]
- Logit(Y) is linear in the predictors

Probabilities and Odds: $Logit(Y) = \alpha + \beta X + \varepsilon$

www.moresteam.com

Probabilities and Odds: $Logit(Y) = \alpha + \beta X + \varepsilon$

	Own		
Gender	Yes	Νο	Total
Male	62	157	219
Female	48	185	233
Total	110	342	452

$$P(Own) = \frac{110}{452} = 0.24 \qquad Odds(Own) = \frac{110}{342} = \frac{0.24}{0.76} = 0.32$$
$$P(Don't own) = \frac{342}{452} = 0.76 \qquad Odds(Don't own) = \frac{342}{110} = \frac{0.76}{0.24} = 3.1$$
$$0.32* 3.1 = 1$$

The Odds Ratio: A Measure of Association

Odds(Event |Group 2) = $\frac{P(\text{Event in Group 2})}{P(\text{Non-Event in Group 2})}$

X = Categorical:

Odds ratio = the increase/decrease in the odds of the event in group 1 relative to group 2

X = Continuous:

Odds ratio = the increase/decrease in the odds of the event for a unit increase in X

Odds Ratio of Owning: $Logit(Y) = \alpha + \beta X + \varepsilon$

	Own	Own Car?		
Gender	Yes	No	Total	
Male	62	157	219	
Female	48	185	233	
Total	110	342	452	

Odds(Own/Male) =
$$\frac{62}{157}$$
 = 0.39
Note:
 $Log(1.52) = 0.418$
Odds(Own/Female) = $\frac{48}{185}$ = 0.26
Odds Ratio(Own) = $\frac{0.39}{0.26}$ = 1.52 Males have 1.52 times greater odds of owning a car than females.

Odds and Odds Ratios: $Logit(Y) = \alpha + \beta X + \epsilon$

Event |Success: Y = 1 Non-Event | Failure: Y = 0

X = x:
Logit(Y = 1) = Log-odds(Y = 1) =
$$\alpha + \beta x$$

 $Odds (Y = 1) = e^{(\alpha + \beta x)}$

X = Binary (0, 1):
X = 1:
$$Odds (Y = 1 | X = 1) = e^{(\alpha + \beta^{*1})} = e^{\alpha + \beta}$$

X = 0: $Odds (Y = 1 | X = 0) = e^{(\alpha + \beta^{*0})} = e^{\alpha}$
Odds Ratio (Y=1|X) = $\frac{Odds(Y=1 | X=1)}{Odds(Y=1 | X=0)} = \frac{e^{\alpha + \beta}}{e^{\alpha}} = \frac{\lambda^{\alpha} e^{\beta}}{e^{\alpha}} = e^{\beta}$

Copyright 2010 MoreSteam.com www.moresteam.com

OLS vs. BLR : $Logit(Y) = \alpha + \beta X + \epsilon$

Ordinary Least Squares (OLS)

- -infinity < β < infinity
- $\beta < 0 \rightarrow$ negative association
- $\beta > 0 \rightarrow$ positive association

Binary Logistic Regression (BLR)

- 0 < Odds ratio = e^{β} < infinity
- Odds ratio $= e^{\beta} < 1$ \rightarrow decreasing odds
- Odds ratio = e^β > 1
 → increasing odds

Beta vs. Exp(Beta): $Logit(Y) = \alpha + \beta X + \epsilon$

Odds Ratio of Owning: Multiple Predictors

Own car	Coeff (β)	Z	P(Z> z)
constant	-4.683	-3.18	0.001
income	-0.0102	-0.02	0.986
age	0.246	3.55	0.000
male	0.418	2.02	0.044

Odds Ratio =
$$e^{\beta}$$

Income	0.99	A unit increase in income does not change the odds of owning a car.
Age	1.28	A unit increase in age increases the odds of owning a car by 28%.
Male	1.52	Males have a 52% higher odds of owning a car than females

Estimating the Parameters

OLS Regression uses Minimum Least Squares method

• When applied to a logistic regression model, the estimators lose their desirable statistical properties.

Logistic regression uses the Maximum Likelihood method

- Find values of the parameters α and β which make the probability of observing Y, i.e., P(Y = y) as large as possible.
- "Best" parameters to explain the observed data.

Assessing Fit and Comparing Models

Comparing alternative models

• Does the model which includes the selected variables tell us more about the response variable than a model that does not include those variables?

Assessing Goodness of Fit

• How well does our model 'fit' the observed data (describe the response variable Y)?

Another Example: Late Debt Payments

Do Age Category and/or Home Ownership affect P(Default) and if so, how?

Default	Coeff (β)	Odds ratio (e^{β})
constant	0.4214	
homeowner	-0.2672	0.76
age (<35)	0.1512	1.16
age (35-64)	0.2704	1.31

Qstn: What is the estimated probability that a <u>renter aged 30 years</u> will default on a loan payment?

Log-Odds (Default) = $0.4214 - 0.2672^{*}(0) + 0.1512^{*}(1) + 0.2704^{*}(0) = 0.5726$

Odds (Default) =
$$e^{0.5726}$$
 = 1.773
 $P(Default) = \frac{e^{0.5726}}{1 + e^{0.5726}} = 0.64$

How to Teach Logistic Regression

- Keep it **Simple**.
- Use **analogies** between ordinary least squares (OLS) regression and binary logistic regression (BLR).
- Introduce BLR with a single independent variable, as is used to teach OLS.
- Illustrate concepts with **contingency tables**.
- Link logistic regression concepts to the **interpretation** of statistical computer outputs.

References

- Logistic Regression Models: Joseph M. Hilbe
- Applied Logistic Regression: David W. Hosmer, Stanley Lemeshow
- Teaching, Understanding and Interpretation of Logit Regression: Anthony Walsh (Teaching Sociology, Vol. 5, No. 2)
- Using and Interpreting Logistic Regression: Ilsa L. Lottes, Alfred DeMaris, Marina A. Adler (Teaching Sociology, Vol. 24, No. 3)

Thank you for joining us

Copyright 2010 MoreSteam.com www.moresteam.com

Resource Links and Contacts

Questions? Comments? We'd love to hear from you.

Smita Skrivanek, Principal Statistician - MoreSteam.com sskrivanek@moresteam.com

Larry Goldman, Vice President Marketing - MoreSteam.com lgoldman@moresteam.com

Additional Resources:

Archived presentation, slides and other materials: <u>http://www.moresteam.com/presentations/webcast-regression-analysis-attribute-data.cfm</u>

Master Black Belt Program: <u>http://www.moresteam.com/master-black-belt.cfm</u>

