

Monte Carlo Simulation: Don't Gamble Away Your Project Success

Maurice (Mo) Klaus

January 31, 2012

Agenda

- Welcome
- Introduction of MBB Webcast Series
 - Larry Goldman, MoreSteam.com
- Monte Carlo Simulation
 - Maurice Klaus, MoreSteam.com
- Open Discussion and Questions

File View He	A D C A
- Attendee Lis	at (2 Max 201) 🕥
Attendees	(1) Staff (1)
🔮 NA	MES - ALPHABETICALLY +
🗶 Corena Bal	nr (Me)
	Search 💽 💿
- Audio	
Audio Mode	: OUse Telephone
	4) 00000000
Audio Setup	
Talking: Suzie	Smith
Questions	8
Questions Log	~
Q: is there a vo	blume discount?
Туре у	vour question here.
	Send
W	Webinar Now /ebinar ID: 731-938-951

MoreSteam.com – Company Background

- Founded 2000
- Over 330,000 Lean Six Sigma professionals trained
- Serving over 50% of the Fortune 500
- First firm to offer the complete Black Belt curriculum online
- Courses reviewed and approved by ASQ
- Registered education provider of Project Management Institute (PMI)

Today's Presenter

Maurice Klaus

BB and Product Architect, MoreSteam.com

- Product Architect for EngineRoom[®]
- MoreSteam course content developer
- Over 16 years of management consulting experience and has worked with more than 75 private sector organizations
- M.S. and B.S. in Mechanical Engineering from The University of Michigan

Objectives

An understanding of Monte Carlo simulation

- Background: what, why, when
- Technique: how
- Examples
- Using web-based EngineRoom®

☆ I want you to want to try this out when it makes sense

What is Monte Carlo simulation?

An analysis technique

Variation of inputs (x) on the output (Y)

Defines

- The "f" in Y = f(x), transfer function
- Probability distribution of Xs

Produces

- Probability distribution of the Y
- Sensitivity of Y to changes in X

☆ Models a situation and characterizes the output

Why use Monte Carlo simulation

- Accounts for variation of inputs
- Characterizes output **prior** to committing resources
- Provides a model for on-going assessment

Better informed decision making

When to use Monte Carlo simulation?

- A decision needs to be made
- Inputs (Xs) can be characterized with a **probability distribution**
- Transfer function, f in Y=f(X), can be expressed as an explicit formula

A powerful decision-making support tool

When to use Monte Carlo simulation?

To answer questions...

Will the components of this product assembly together?

What is likelihood of achieving our profitability goal in this project? What is the potential for this process to meet the customer specifications?

* Before building the product, selecting the project, improving the process

Technique

- 1. Process parameters
- 2. Characterize Xs
- 3. Transfer function
- 4. Results

☆ Straightforward and powerful process

Example 1

- Project prioritization and selection:
 - Return on Investment (ROI)
 - = 100*(Revenue Expenses)/Expenses
- Y=*f*(X)
 - Y: ROI
 - Xs: X₁ Revenue, X₂Expenses
 - -f: 100*(Revenue Expenses)/Expenses
 - $-Y = f(X) = (X_1 X_2)/X_2$
 - Y = ROI = 100*(Revenue Expenses)/Expenses

Example 1 – no variation

- Simple equation: ROI = (Revenue Expenses)/Expenses
- Let Revenue = \$4,000
- Let Expenses = \$1,000
- ROI = 100*(\$4,000 \$1,000)/\$1,000 = 300%
- Goal = 200% minimum

Example 1...with variation

Best case:

- Revenue = \$5,500, Expenses = \$750, ROI = 633%

Worst case

– Revenue = \$2,250, Expenses = \$1,950, ROI = 15%

Example 1...with variation

- Best case:
 - Revenue = \$5,500, Expenses = \$750, ROI = 633%
- Worst case

– Revenue = \$2,250, Expenses = \$1,950, ROI = 15%

- Likely case
 - Revenue = \$4,000, Expenses = \$1,000, ROI = 300%

Example 1...Monte Carlo random sampling

- Revenue, triangular distribution
 - Min = \$2,250, Max = \$5,500, Mode = \$4,000
- Expenses, triangular distribution
 - Min = \$750, Max = \$1,950, Mode = \$1,000

Copyright 2012 MoreSteam.com www.moresteam.com

Example 1...The technique applied

- 1. Process parameters
 - Output: ROI, Units: %
 - Lower spec = 200%, Upper spec = none
- 2. Characterize Xs
 - Revenue: triangular distribution
 - Min = \$2,250, Max = \$5,500, Mode = \$4,000
 - Expenses: triangular distribution
 - Min = \$750, Max = \$1,950 , Mode = \$1,000
- 3. Transfer function
 - Y = ROI = 100*(Revenue Expenses)/Expenses
- 4. Results

Example 1 – Results...distribution of Y (ROI)

Output Statistics		
Trials	10,000 -	1,000,000
Max	588.4	614
Min	27.15	19.42
Median	222	222.1
Average	231.7	231.4
Std Dev	89.61	88.88
Skew	0.4800	0.4757
Kurtosis	-0.1155	-0.1009
Anderson-Darling (normality) p-valu	ie 0.0000	0.0000
Model Yield	59.60%	59.70%
Model DPMO	404,000	402,983

If p is low, H_o must go

☆ There is a 40% chance of missing the ROI target

Example 1 – Results...sensitivity

Changes in which X have the most impact on Y?

☆ Work on the highest sensitivity Xs to reduce variation in Y

Example 1...Practical significance

- Our project ROI is 300%, it is well above our 200% hurdle so we recommend moving forward.
- The most likely project ROI is 232%, which is above our 200% hurdle. However, there is a 40% likelihood of missing the ROI hurdle. We recommend tabling this project while we review possibilities for reducing the potential variation in expenses which contribute more to the variation of ROI than revenue.

Example 1...Conclusion, next steps

- Review the output
- 40% chance of missing the ROI target
- Make a better informed decision amongst the possible projects
- Focus on reducing the variation in expenses if opportunity to revisit the project is given

How are you doing?

Example 2 – Product design

Part B

☆ Tolerances specified in this manner are, in effect, uniform distributions

Example 2 – Product design

• No-fit conditions unacceptable

- Acceptable gap range 0.250 0.750 mm
 - Example:
 - Gap of 0.200 mm is a no-fit condition, 0.200 < 0.250
 - Gap of 0.800 mm is a no-fit condition, 0.800 > 0.750
 - Gap of 0.280 mm is acceptable, 0.250 < 0.280 < 0.750

Example 2 – non Monte Carlo approach

- Maximum and minimum material conditions
- Calculate gap

Scenario	Part A (mm)	Part B (mm)	Gap (mm)	Fit?
Nominal 10.250		10.750	0.500	Yes
Tolerance	+/- 0.125	+/- 0.075	n/a	n/a
Maximum	10.125	10.825	0.700	Yes
Minimum	10.375	10.675		Yes
Roc	om to spare?		Room to spare?	
Scenario Min Ga	p Min Case	Nominal Case	Max Case Max Gap	
Unacceptable	Δ	cceptable Range	Unac	ceptable
Gap 0.25	0 0.300	0.500	0.700 0.750	

☆ Will the *actual* gap be within that range?

Example 2 – distribution of Xs

- Maximum and minimum material conditions approach is same as the uniform distribution
- Real-life is typically the normal distribution
- Approach to characterizing Xs:
 - 1. Get real data if components exist
 - 2. Get surrogate data if possible
 - 3. Use a triangular distribution when no surrogate data are available

Example 2 – Monte Carlo simulation

1. Process parameters

- Output: Gap (mm)
- POLICE LINE DO NOT GROSS Lower Specification Limit: 0.250 mm
- Upper Specification Limit: 0.750 mm

2. Characterize Xs based on historical data

- Part A: Normal distribution
 - Mean: 10.250 mm, Standard Deviation: 0.070 mm
- Part B: Normal distribution
 - Mean: 10.750 mm, Standard Deviation: 0.090 mm

3. Transfer function

- Y = Gap = B - A

Example 2 – EngineRoom®

Engi	ineRo	om	m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Welco	ome, Maurice	!			
HOME	DEFINE	MEASURE	ANALYZE	IMPROVE	CONTROL	ABOUT	SUPPORT				
Enter proce	ess informa	tion				Steps: 1 2	3 4 ?				
Enter the mode	el name: To	leranceStack									
Date created:	1/2	20/2012 1:29:37 PM									
Date last modif	fied: 1/2	24/2012 9:09:59 AM									
Enter a model c	Th Ja description:	is is Example 2 for n 31, 2012	the Monte Car	Enter varia	ble information	and the transfer	r function <u>HE</u>	<u>ILP</u>		Steps:	1 2 3 4
Enter the numb variables:	per of 2	•		Required distri	e of each variable an ibution data fields, if	left empty, will be ma	arked with a '*'. I	nvalid distril	rmation: bution data entr	ies will be marke	ed with a '!'.
Enter the name output:	of the Ga	р		A. PartA B. PartB	Distributio	n: Normal 🔽 Mean	n 10.250 Std De n 10.750 Std De	v .07 v .09			
Enter the outpu	ıt units: mn	n									
Lower Specifica	ation Limit: 0.2	50		Enter the trans for the process	sfer function below. I s output in terms of	Jsing the letter desigr the appropriate comb	nations A, B, C, e pination of variat	tc. for the va ples. Example	riables above, w e: (A+B+C)*D/(E	rite the formula ^2).	
Upper Specifica	ation Limit: 0.7	50		Note: Do not u	use the '=' sign. It wil	l be added automatica	ally. Only use '('	and ')' for p	arentheses. Do r	not use '{', '[', ']',	
Enter number o	of trials: 10	000		Gap =	-A						
										Pre	evious Next

Example 2 – Distribution of Y (Gap)

Normal distributions for Xs based on historical data

Trials	10,000
Max	0.9913
Min	0.0918
Median	0.4986
Average	0.4985
Std Dev	0.1134
Skew	0.0088
Kurtosis	0.0230
Anderson-Darling (normality) p-value	0.8521
Model Yield	97.19%
Model DPMO	28100

Predicted Performance*		
% Above USL	1.33%	
% Below LSL	1.42%	
Yield	97.25%	
DPMO	27526	
Sigma Level	3.4	
Рр	0.7347	
Ppk	0.7304	

☆ There will be a no-fit condition 2.75% of the time

EngineRoom[®]

Example 2 – Sensitivity analysis

29

Sensitivity Analysis

Example 2 - Conclusion

- Use historical data to characterize Xs
- Determine the likelihood of a no-fit condition

- 2.75%

- Compare to desired likelihood
 - 2.75% > 0.00%

• Part B contributes more to variation in the Gap than Part A, focus on Part B if 2.75% is unacceptable

☆ Make a better informed decision

Example 3 – Process improvement

- Simple example DFSS course
- Burger Kwik drive-through
- VOC = 3 minutes max wait time
- Current performance:
 - 3 minutes or less < 90% of time
 - Customers are complaining

Example 3 – Process improvement

Transfer Function: Y = Cycle Time = A + B + C + D

☆ Use a triangular distribution if historical and surrogate data are not available

Example 2...The technique applied

- 1. Process parameters
 - Output: Cycle Time, Units: minutes
 - Lower spec = none, Upper spec = 3 minutes
- 2. Characterize Xs
 - All 4 steps: normal distribution
 - Step A, mean = 1.0 min, standard deviation = 0.20 min
 - Step B, mean = 0.50 min, standard deviation = 0.10 min
 - Step C, mean = 1.0 min, standard deviation = 0.05 min
 - Step D, mean = 0.25 min, standard deviation = 0.02 min
- 3. Transfer function

- Y = Cycle Time =
$$A_{cycle time} + B_{cycle time} + C_{cycle time} + D_{cycle time}$$

4. Results

Example 3 – Distribution of Y (Cycle Time)

Predicted Performance*		
% Above USL	13.75%	
% Below LSL	N/A	
Yield	86.25%	
DPMO	137466	
Sigma Level	2.6	
Рр	2.1822	
Ppk	0.3639	

EngineRoom[®]

Example 3 – Improvement iteration "1"

- VOC indicates drive-through cycle time #1
- Freshly cooked not as important
- Pre-cook burgers, off critical path
- 50% of burgers pre-cooked, available in warmer

Example 3 – Improvement iteration "1"

Example 3 – Distribution of Y (Cycle Time)

Output S	tatistics
Trials	10,000
Max	3.5327
Min	0.8727
Median	2.2782
Average	2.2523
Std Dev	0.5500
Skew	-0.0138
Kurtosis	-1.3590
Anderson-Darling (norr	nality) p-value 0.0000
Model Yield	93.21%
Model DPMO	67900

.

A Bi-modal distribution as expected; improvement good, but not enough

Copyright 2012 MoreSteam.com www.moresteam.com

Example 3 – Improvement iteration "2"

- Can adjust to 95% pre-cooked
- 5 minutes maximum in warmer
- No impact to staffing
- Does not affect customer perception of taste or freshness

Example 3 – Improvement iteration "2"

Example 3 – Distribution of Y (Cycle Time)

Output Statistics

10.000

Irials	10,000
Max	3.3224
Min	0.9336
Median	1.7621
Average	1.7963
Std Dev	0.3117
Skew	1.4125
Kurtosis	3.6138
Anderson-Darling (normality) p-value	0.0000
Model Yield	99.30%
Model DPMO	7000

EngineRoom[®]

Copyright 2012 MoreSteam.com www.moresteam.com

Example 3 - Conclusion

- Review results
- Compare the yield of 99.3% to the goal of 90%
- Decide whether or not to proceed with the improvement

☆ Make a better informed decision

Thank you for joining us

Master Black Belt Program

- Offered in partnership with Fisher College of Business at The Ohio State University
- Employs a Blended Learning model with world-class instruction delivered in both the classroom and online
- Covers the MBB Body of Knowledge, topics ranging from advanced *DOE* to *Leading Change* to *Finance for MBBs*

Questions? Comments? We'd love to hear from you.

Maurice Klaus, BB and Product Architect – MoreSteam.com mklaus@moresteam.com

Larry Goldman, Vice President Marketing – MoreSteam.com <u>Igoldman@moresteam.com</u>

Additional Resources

Archived presentation, slides and other materials: http://www.moresteam.com/presentations/

Master Black Belt Program: <u>http://www.moresteam.com/master-black-belt.cfm</u>

